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Abstract

DNAPL (Dense Non-Aqueous Phase Liquid) contamination poses a major threat to the
groundwater supply; thus, successful remediation of the contaminated sites is of
paramount importance. Delineating and removing the DNAPL source is an essential step
that renders remediation successful and lowers the estimated remediation time and cost
significantly.

This work addresses the issue of identifying and delineating DNAPL at its
source. The methodology employed here is based upon the rapidly evolving realization
that it is unlikely to identify and adequately define the extent of a DNAPL source
location using field techniques and strategies that focus exclusively on directly locating
separate phase DNAPL.

The goal of this work is to create an optimal search strategy in order to obtain, at
least cost, information regarding a DNAPL source location. The concept is to identify,
prior to a detailed site investigation, where to initially sample the subsurface to determine
the DNAPL source characteristics and then to update the investigative strategy in the
field as the investigation proceeds.

The search strategy includes a stochastic groundwater flow and transport model
that is used to calculate the concentration random field and its associated uncertainty. The
model assumes a finite number of potential source locations. Each potential source
location is associated with a weight that reflects our confidence that it is the true source
location. After a water quality sample is selected, an optimization algorithm is employed
that finds the optimal set of magnitudes that corresponds to the set of potential source
locations.

The simulated concentration field is updated using the real data and the updated
plume is compared to the individual plumes (that are calculated using the groundwater
flow and transport simulator considering only one source at a time). The comparison
provides new weights for each potential source location. These weights define how the
concentration realizations calculated by the stochastic groundwater flow and transport
model will be combined. The higher the weight for a specific source location, the more
concentration realizations generated by this source will be included in the calculation of
the mean concentration field. The steps described above are repeated until the weights
stabilize and the optimal source location is determined.

The algorithm has been successfully tested using various synthetic example
problems of increasing complexity. The effectiveness of the search strategy in identifying
a DNAPL source at two field sites is also demonstrated. The sites chosen for the test are
the Anniston Army Depot (ANAD) in Alabama and Hunters Point Shipyard in
California. The contaminant of interest at both sites is trichloroethene (TCE).
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1. Objective

This work addresses the issue of identifying and delineating DNAPL at its source. More
specifically the goal of this work is to create an optimal search strategy to obtain, at least
cost, information regarding a DNAPL source magnitude and location. The concept is to
identify, prior to a detailed site investigation, where to initially sample the subsurface to
determine the DNAPL source characteristics and then to update the sampling strategy in
the field as the investigation proceeds. The overall technical objective of this project is to
develop, test and evaluate a computer assisted analysis algorithm to help groundwater
professionals identify, at least cost, the location, magnitude and geometry of a DNAPL
source.

The technical approach of this work is based upon the rapidly evolving
realization that it is unlikely to identify and adequately define the extent of a DNAPL
source location using field techniques and strategies that focus exclusively on directly
locating separate phase DNAPL. In essence, the target DNAPL is generally too small and
filamentous to be identified efficiently via borings or geophysical methods, even using
state of the art techniques. On the other hand, the plume emanating from a DNAPL
source is typically quite large and consequently easily discovered, although identification
of its extent and its concentration topology may, depending upon the nature of the
groundwater flow field, require the collection of considerable field data. Water quality,
lithological and permeability information constitute the primary field data used in this
work.

1.1. Overview

Chapter 2 is comprehensive literature review of research related to source identification
problems. A distinction between four different source identification problem types is
made and two modeling approaches (forward vs. backward models) are presented and
compared. The second part presents a literature review on the various tools used in this
work.

Chapter 3 provides a detailed presentation of the methodology employed in this
work. An extensive overview of the various tools used in the search algorithm is provided
along with a flow diagram of the sequence of steps involved.

Chapter 4 is devoted to the demonstration of the effectiveness of the proposed
DNAPL search strategy by the use of various synthetic example problems. These
problems include a single source homogeneous aquifer, the addition of a pumping well,
multiple true DNAPL sources, larger DNAPL source targets and two dimensional and
three dimensional problems. Chapter 4 also includes a sensitivity analysis of various
input parameters such as: the initial weights that correspond to each potential source
location, the actual true source location chosen for the synthetic examples, the hydraulic
conductivity correlation length, the number of Monte Carlo simulations and the weights
of importance that correspond to features related to the selection of the optimal water
quality sampling location and the number and type of a-cuts used at the plume
comparison step of the algorithm. The above parameters are described in detail in
Chapter 3.
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Chapter 5 describes the application of the proposed methodology to the field.
Two real world problems were used as “blind tests’ of the proposed algorithm. The sites
chosen for the implementation of the search algorithm are the Anniston Army Depot
(ANAD) and Hunters Point Shipyard (HPS), located in northeast Alabama and San
Francisco, California, respectively. The results and challenges of the field application are
presented and discussed in Chapter 5. Conclusions resulting from the various synthetic
and field applications are presented in Chapter 6.
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2. Background

In this chapter, a comprehensive literature review is provided that is comprised of two
parts. The first part offers a review of past and current approaches for groundwater
contaminant source identification. The second part provides background knowledge on
the various tools that were used in this work.

2.1. Source identification background

In recent years, hydrogeologists have focused a lot of attention on the problem of
groundwater contaminant source identification. There are three important questions that
need to be answered regarding a contaminant source. When was the contaminant released
from the source (release history)? Where is the contamination source (source location)?
At what concentration was the contaminant released from the source (source magnitude)?
Depending on which of these questions one tries to answer, there exist different types of
source identification problems.

2.1.1. Source identification problem types
2.1.1.1. Reconstruction of source release history

One type of problem that has been extensively studied in past years is the reconstruction
of contaminant source release history. In this case, the contaminant source location is
assumed known and researchers seek to identify the release time of the contaminant as
well as the magnitude of the source.

One of the very first attempts to reconstruct the release history of a contaminant
source was performed by Skaggs and Kabala (1994). They applied a method called
Tikohonov Regularization (TR) to solve a one dimensional, saturated, homogeneous
aquifer problem with a complex contaminant release history. In their work they assumed
no prior knowledge of the release function. Their method was found to be highly
sensitive to errors in the measurement data. Liu and Ball, (1999) tested Skaggs and
Kabala’s method at a low permeability site at Dover Air Force Base, Delaware. They
performed tests for two primary contaminants, PCE and TCE, and found that the results
matched the measured data well in most cases. Skaggs and Kabala (1998) used Monte
Carlo numerical simulations to determine the ability to recover various ‘test functions’.
These test functions were designed to provide insight into the effect of transport
parameters on the ability to recover the true source release history.

Skaggs and Kabala (1995) applied a different method called Quasi-Reversibility
(QR) to the same problem and argued that it is potentially superior to the TR approach
because of its improved computational efficiency, its easier implementation and the fact
that it allows for space and time dependent transport parameters. However, the results
showed that the above advantages of the QR method come at the expense of accuracy.

An inverse problem approach was proposed by Woodbury and Ulrych (1996)
that uses a statistical inference method called Minimum Relative Entropy (MRE). The
authors applied this method to the same problem as Skaggs and Kabala (1994) and
demonstrated that, for noise-free data, the reconstructed plume evolution history matched
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the true history very well. For noisy data, their technique was able to recover the salient
features of the source history.

Neupauer et al. (2000) evaluated the relative effectiveness of the TR and MRE
methods in reconstructing the release history of a conservative contaminant in a one-
dimensional domain. They concluded that in the case of error-free concentration data,
both techniques perform well in reconstructing a smooth source history function. In the
case of error-free data the MRE method is more robust than TR when a non-smooth
source history function needs to be reconstructed. On the other hand, the TR method
proved to be more efficient in the case of data that contain measurement error.

Snodgrass and Kitanidis (1997) developed a probabilistic method for source
release history estimation that combines Bayesian theory with geostatistical techniques.
The efficiency of their method was tested for transport in a simple, one-dimensional,
homogeneous medium and it produced a best estimate of the release history and a
confidence interval. Their method is an improvement on previous solutions to the source
identification problem because it is more general, it incorporates uncertainty and it makes
no assumptions about the nature and structure of the unknown source function.

Another approach in recovering the source release history was developed by
Alapati and Kabala (2000). A non-linear least-squares (NSL) method without
regularization was applied to the same problem addressed earlier by Skaggs and Kabala
(1994). The performance of the method was affected mostly by the amount of noise in the
data and the extent to which the plume is dissipated. In the case of a gradual source
release, the NSL method was found to be extremely sensitive to measurement errors;
however, it proved effective in resolving the release histories for catastrophic release
scenarios, even for data with moderate measurement errors.

2.1.1.2. Identification of source location or release time of contaminant

Another type of source delineation problem is the identification of the location or release
time of the source. Wagner (1992) developed a strategy that performs simultaneous
parameter estimation and contaminant source characterization by solving the inverse
problem as a non-linear maximum likelihood estimation problem. In the examples
presented, the unknown source parameter estimated was the contaminant flux at given
locations and over specific times.

Wilson and Liu (1994) used a heuristic approach to solve the stochastic transport
differential equations backwards in time. They obtained two types of probabilities:
location and travel time probabilities. Liu and Wilson (1995) extended their previous
study to a two-dimensional heterogeneous aquifer. Their results were very similar to
those obtained by traditional forward-in-time methods. Neupauer and Wilson (1999)
proposed the use of the adjoint method as a formal approach for obtaining backward
probabilities and verified the results of the study by Wilson and Liu (1994). Neupauer
and Wilson (2001) extended their previous work to multidimensional systems and later
applied their methodology to a TCE plume at the Massachusetts Military Reservation
(Neupauer and Wilson, 2005). Under the assumption that their model is properly
calibrated, their results verify the existence of the two suspected contamination sources
and suggest that one or more additional sources is likely. Recently, Neupauer and Lin
(2006) extended the work by Neupauer and Wilson (1999, 2001, and 2005) by
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conditioning the backward probabilities on measured concentrations. The results show
that when the measurement error is small and as long as the samples are taken from
throughout the plume, the conditioned probability density functions include the true
source location or the true release time.

2.1.1.3. Identification of source location and magnitude

A third type of source identification problem involves the simultaneous identification of
the source location and magnitude, which is the type of problem addressed in this work.
Among the first to attempt solving this type of source identification problem were
Gorelick et al. (1983). Their strategy involves forward-time simulations coupled with a
linear programming model or least squares regression. In their work, they assumed no
uncertainty in the physical parameters of the aquifer. Their source identification models
were tested for two different problems, a steady state and a transient case. The method
was found to be successful in solving both problems, in the presence of minimal
measurement errors in the first problem, and when there was an abundance of data in the
second problem. Datta et al. (1989) employed a statistical pattern recognition technique
to solve problems similar to those considered by Gorelick et al. (1983) and found that it
required less data than the optimization approach to achieve similar results.

Another study whose goal was to identify the location and magnitude of the
contamination source was recently performed by Mahinthakumar and Sayeed (2005).
They compared several popular optimization methods and proved that a hybrid genetic
algorithm — local search approach was more effective than using individual approaches,
identifying the source location and concentration to within 1% of the true values for the
hypothetical, single source identification problems they investigated.

One recently proposed approach in identifying the source location and
recovering the concentration distribution of contaminant sources is that of Hayden et al.
(2007). Their strategy involves the use of an extended Kalman filter in conjunction with
the adjoint state method and was successfully applied in both experimental and synthetic
problems.

2.1.1.4. Identification of source location and release time of contaminant

Another type of source characterization problem targets the identification of both the
source location and release time of the contaminant of interest. Atmadjia and Bagtzoglou
(2001) tackled this problem by using a method called Marching — Jury Backward Beam
Equation (MJBBE) to solve the inverse problem. Using examples involving deterministic
heterogeneous dispersion coefficients, the authors were able to reconstruct the time
history and spatial distribution of a one-dimensional plume. Baun and Bagtzoglou (2004)
extended the aforementioned study by coupling the MJBBE method with Discrete
Fourier Transform processing techniques to significantly improve the computational
efficiency of the method and enhanced it by implementing an optimization algorithm to
overcome difficulties associated with the ill-posed nature of the inverse problem. They
applied their method to a two-dimensional, advection-dispersion problem with
homogeneous and isotropic coefficients. Their results showed that even when only one
measurement location is available, as long as it is close to the centroid of the plume, the
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algorithm will perform very well. They also noted that the results become less reliable as
one goes further into the past.

2.1.1.5. Identification of location, magnitude of source and release time of contaminant

The final and most challenging category of source characterization problems is the
simultaneous identification of all three source characteristics (location, magnitude and
release time). Mahar and Datta (1997) formulated a methodology that combines an
optimal groundwater quality monitoring network design and an optimal source
identification model. Their results show that the addition of an optimally designed
monitoring network to the existing network of monitoring wells improves the source
identification model results. Mahar and Datta (2000) applied a non-linear optimization
model with embedded flow and transport simulation constraints to solve an inverse
transient transport problem. They found that the estimated source fluxes differ from the
true ones by approximately 10% in the case of no missing data and 30% in the case of
missing data. One of their most important observations was the fact that results were best
when the observation wells were located downstream in close proximity to the sources.

Aral et al. (2001) used a progressive genetic algorithm (PGA) to solve the
optimization problem. Their method proved to be very computationally efficient and it
was successfully applied on a single-source identification problem in a heterogeneous
aquifer. The authors observed that the measurement errors affected the reconstruction of
the source release history more than they affected the source location identification.

The interested reader is referred to Morrison et al. (2000) and Atmadja and
Bagtzoglou (2001) for an extensive literature review of methods that focus on
groundwater contaminant source identification.

2.2. Forward vs. backward models

Source locations and historical contaminant release histories are assumed in this
discussion to be unknown inputs to the groundwater contaminant transport model.
Therefore, the source identification problem is a problem whose solution requires the
collection of contaminant concentration data from monitoring wells. Groundwater
contaminant transport is an irreversible process because of its dispersive nature. This
makes modeling contaminant transport backwards in time an ill-posed problem. Ill-posed
problems exhibit discontinuous dependence on data and high sensitivity to measurement
errors. A problem is considered ill-posed if its solution does not satisfy the following
conditions: existence, uniqueness and stability. In the case of a source identification or
release history problem, the condition of existence is satisfied since the contamination
has to originate from someplace. Thus, researchers have to deal with the issues associated
with instability and non-uniqueness.

There are two different approaches to solving the source identification problem.
One approach aims to solve the differential equations backwards in time (inverse
problem) by using techniques that will overcome the problems of non-uniqueness and
instability. These techniques include: the random walk particle method (Bagtzoglou et al.,
1991, 1992), the Tikhonov regularization method (Skaggs and Kabala, 1994), the quasi-
reversibility technique (Skaggs and Kabala, 1995), the minimum relative entropy method
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(Woodbury and Ulrych, 1996), the Bayesian theory and geostatistical techniques
(Snodgrass and Kitanidis, 1997), the adjoint method (Neupauer and Wilson, 1999,
Hayden et al., in review, Li et al., 2007 ), the non-linear least-squares method (Alapati
and Kabala, 2000), the marching-jury backward beam equation method (Atmadjia and
Bagtzoglou, 2001) and the genetic algorithm (Aral et al., 2001; Mahinthakumar and
Sayeed, 2005).

A very different approach to solving the source identification problem is a
simulation-optimization approach, which couples a forward-time contaminant transport
simulation model with an optimization technique. The work presented here employs a
simulation-optimization model. Some of the optimization techniques included in this
category are: linear programming and least squares regression analysis (Gorelick et al.,
1983), non-linear maximum likelihood estimation (Wagner, 1992), and statistical pattern
recognition (Datta et al., 1989). This approach avoids the problems of non-uniqueness
and stability associated with formally solving the inverse problem but the iterative nature
of the simulation model usually requires increased computational effort. Mahar and Datta
(1997, 2000) used non-linear programming with an embedding method that eliminates
the necessity of external simulation since the governing equations of flow and solute
transport are directly incorporated in the optimization model as binding constraints. The
use of artificial neural networks (Singh et al., 2004; Li et al., 2006) offers an alternative
way of simulating the model results which proves to be very computationally effective.
Mirghani et al., (2006) proposed a grid-enabled simulation-optimization approach as a
method to solve problems that require a large number of model simulations.

2.3. Brief introduction and background of tools used in this work

A stochastic groundwater flow and transport model lies at the foundation of the
methodology employed in this work. The crux of this model is a random hydraulic
conductivity field, whose generation requires the availability of field data. Usually the
available information on the model parameters is limited, thus the hydrogeologic
parameters are associated with considerable uncertainty. The stochastic groundwater flow
and transport model, with uncertain hydraulic conductivity, provides the means for
generating a random contaminant concentration field. There are many different
techniques for achieving this; perturbation methods, stochastic equation methods and
Monte Carlo methods are among the most popular ones. Herrera (1998) provides a
comprehensive review of these methods. The Monte Carlo approach is the method used
in this work. Recently, there was a new method developed by Kunstmann et al. (2002),
called first-order second moment (FOSM) that reduces the computational effort required
by the Monte Carlo approach, but its application is restricted to a very limited uncertainty
space (Wu and Zheng, 2004).

The Monte Carl